1. Home
  2. Honda R&D Technical Review Vol.32 N...
  3. 3D-structured Cathode Electrode for...

Technical Review e-Book: Summary

3D-structured Cathode Electrode for High Capacity Lithium-ion Battery

Article of Honda R&D Technical Review Vol.32 No.2

Summary

A study was made of 3D structuring applied to electrode collectors for the purpose of heightening lithium-ion battery performance.
It was confirmed that loading, which is the electrolyte composite coating amount per unit area, could be increased to 150 mg/cm2 on the cathode. The results from the calculation of energy density when that electrode was applied clearly showed that energy density could be increased 10% with respect to the foil-coated cathode.
The results from comparison of the foil-coated cathode and 3D-structured cathode with the cathode loading fixed at 90 mg/cm2 confirmed that increasing the contact area of the active material and the collector can reduce the initial resistance by 17% with respect to the foil-coated cathode. It was also confirmed that, while the resistance increase during cycle testing was 149% for the foil-coated cathode, this amount was held to 29% for the 3D-structured cathode because of the suppression of structural change.
It was verified that application of the 3D-structured cathode in a lithium-ion battery could achieve a balance between enhancing energy density and addressing the issue of suppressing the increase in resistance and the decrease in durability.

Reference

(1) Yamada, K.: Toward Satisfying and Fulfilling Society−Zero Carbonization of Electric Power and Automobiles in 2050, Journal of Society of Automotive Engineers of Japan, Vol. 73, No. 11, p. 4-10, (2019) (in Japanese)
(2) NEDO: Jisedaijidosha no bunya niokeru sumato comyuniti infura to hyojyunka no arikata ni kakawaru kento, (2016) (in Japanese)
(3) NEDO: EV·PHV rodomappu kentokai hokokusyo, (2016) (in Japanese)
(4) Yoshino, A., Sato, N.: High Safety and Evaluation Technologies in Lithium-ion Batteries for xEV, CMC Publishing Co., Ltd, 296p., (2017) (in Japanease)
(5) Matsunaga, T., Komatsu, H., Shimoda, K., Minato, M., Kamiyama, T., Kobayashi, S., Kato, T., Hirayama, T., Ikuhara, Y., Arai, H., Ukyo, Y., Uchimoto, Y., Ogumi, Z.: Structural Understanding of Superior Battery Properties of Partially Ni-Doped Li2MnO3 as Cathode Material, The Journal of Physical Chemistry, Vol. 7, p. 2063-2067, (2016)
(6) Tabuchi, M., Kageyama, H., Shibuya, H., Doumae, K., Yuge, R., Tamura, N.: Stepwize charging and calcination atmosphere effects for iron and nickel substituted lithium manganese oxide positive electrode material, Journal of Power Sources, Vol. 313, p. 120-127, (2016)
(7) Yabuuchi, N., Nakayama, M., Takeuchi, M., Komaba, S., Hashimoto, Y., Mukai, T., Shiiba, H., Sato, K., Kobayashi, Y., Nakao, A., Yonemura, M., Yamanaka, K., Mitsuhara, K., Ohta, T.: Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries, Nature Comumunications, vol. 7, p. 1-10, (2016)
(8) Nakajima, M., Yabuchi, N.: Lithium-Excess Cation-Disordered Rocksalt-Type Oxide with Nanoscale Phase Segregation Li1.25Nb0.25V0.5O2, Chemistry of Materials, Vol. 29, p. 6927-6935, (2017)
(9) Luo, K., Roberts, M. R., Hao, R., Guerrini, N., Pickup, D. M., Liu, Y., Edstron, K., Guo, J., Chadwick, A. V., Duda, L. C., Bruce, P. G.: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen, Nature Chemistry, Vol. 8, p. 684-691, (2016)
(10) Tatsumi, K., Okada, S., Sakai, T., Kanemura, K., Watanabe, M., Kano, R., Tatsumisago, M., Hayashi, A., Yoshitake, H., Uchimoto, Y., Kawamura, J., Komaba, S., Yabuuchi, N., Hagino, R., Morita, M., Yoshimoto, N., Sakada, J., Sakuda, A., Sakaebe, H.: Richiumuion nijidenchi no kakushingijyutsu to jisedainijidenchi no saishingijyutsu, S&T Publishing Inc., 216p., (2013) (in Japanese)
(11) Zheng, H., Li, J., Song, X., Liu, G., Battaglia, V. S.: A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes, Electrochimica Acta, Vol. 71, p. 258-265, (2012)
(12) Singh, M., Kaiser, J., Hahn, H.: Thick Electrodes for High Energy Lithium Ion Batteries, Journal of the Electrochemical Society, Vol. 162, Issue 7, p. A1196-A1201, (2015)
(13) Singh, M., Kaiser, J., Hahn, H.: A systematic study of thick electrodes for high energy lithium ion batteries, Journal of Electroanalytical Chemistry, Vol. 782, p. 245-249, (2016)
(14) Orikasa, Y., Gogyo, Y., Yamashige, H., Katayama, M., Chen, K., Mori, T., Yamamoto, K., Masese, T., Inada, Y., Ohta, T., Siroma, Z., Kato, S., Kinoshita, H., Arai, H., Ogumi, Z., Uchimoto, Y.: Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution, Scientific Reports, Vol. 6, p. 1-6, (2016)
(15) Li, J., Gao, Y., Liang, X., Park, J.: Ultra-Thin Coating and Three-Dimensional Electrode Structures to Boosted Thick Electrode Lithium-Ion Battery Performance, Batteries & Supercaps, Vol. 2, p. 139-143, (2018)
(16) Zhao, R., Liu, J., Gu, J.: The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery: Applied Energy, Vol. 139, p. 220-229, (2015)
(17) Liu, W., Chen, Z., Guangmin, S., Yongming, L., Hye, R., Liu, C., Yao, H., Bao, Z., Cui, Y.: 3D Porous Sponge – Inspired Electrode for Stretchable Lithium – Ion Batteries, Vol. 28, p. 3578-3583, (2016)
(18) Rakebrandt, J. H., Smyrek, P., Zheng, Y., Seifert, H. J., Pfleging, W.: Laser processing of thick Li(NiMnCo)O2 electrodes for lithium-ion batteries, Proceedings of SPIE – The international Society for Optical Engineering, Vol. 10092M, p. 100920M-100920M-7, (2017)
(19) Chen, Y., Elangovan, A., Zeng, D., Zhang, Y., Ke, H., Li, J., Sun, Y., Cheng, H.: Vertically Aligned Carbon Nanofibers on Cu Foil as a 3D Current Collector for Reversible Li Plating/Stripping toward High-Performance Li-S Batteries: Advanced Functional Materials, p. 1906444-1906455, (2019)
(20) Pei, F., Fu, A., Ye, W., Peng, J., Fang, X., Wang, M., Zheng, N.: Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries, ACS Nano, Vol. 13, p. 8337-8346, (2019)
(21) Zhao, L., Sun, Y., Cai, L., Mitrovic, I., Taylor, S., Chalker, P., Yang, L., Zhao, C.: 3D-structured multi-walled carbon nanotubes/copper nanowires composite as a porous current collector for the enhanced silicon-based anode, Journal of Alloys and Compounds, Vol. 803, p. 505-513, (2019)
(22) Zheng, Y., Seifert, H. J., Shi, H., Zhang, Y., Kübel, C., Pfleging, W.: 3D silicon/graphite composite electrodes for high-energy lithium-ion batteries, Electrochimica Acta, Vol. 317, p. 502-508, (2019)
(23) Roberts, M., Huang, A. F., Johns, P., Owen, J.: Dip-spin coating of reticulated vitreous carbon with composite materials to act as an electrode for 3D microstructured lithium ion batteries, Journal of Power Sources, Vol. 224, p. 250-259, (2013)
(24) Wang, J., Liu, P., Sherman, E., Verbrugge, M., Tataria, H.: Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal forms, Journal of Power Sources, Vol. 196, p. 8714-8718, (2011)
(25) Honda, M.: Happokinzoku no gijyutsushinten to arukarinijidenchi no koseinoka, Materia Japan, Vol. 38, p. 470-474, (1999) (in Japanese)
(26) Yoshinaga, H., Wada, H., Sakai, T.: Ni suisodenchiyo koseino rinpenjyo kinzokukona to sore o mochiita denkyokusakuseigijyutsu no kaihatsu: Journal of the Japan Society of Powder and Powder Metallurgy, Vol. 47, p. 61-67, (2000) (in Japanese)
(27) Fukunaga, H., Kishimi, M., Matsumoto, N., Tanaka, T., Kishimoto, T., Ozaki, T., Sakai, T.: Improvement of Nickel Metal Hydride Battery with Non-foam Nickel Electrode for Hybrid Electric Vehicles Applications, Electrochemistry, Vol. 74, p. 385-393, (2006) (in Japanese)
(28) Nishimura, J., Okuno, K., Kimura, K., Goto, K., Sakaida, H., Hosoe, A., Yoshikawa, R.: Chikuden debaisu no koseinoka ni kiyosuru atarashii syudentai arumi serumetto no kaihatsu: SEI technical Review, Vol. 182, p. 34-38, (2013) (in Japanese)
(29) Sakaida, H., Goto, K., Kimura, K., Okuno, K., Nishinuma, J., Hosoe, A.: Sanjigen renzoku kiko o yusuru arumi takotati (arumi serumetto), SEI Technical Review, Vol. 190, p. 78-83, (2017) (in Japanese)
(30) Kisu, K., Aoyagi, S., Nagatomo, H., Iwama, E., Reid, M. T. H., Naoi, W., Naoi, K.: Internal resistance mapping preparation to optimize electrode thickness and density using symmetric cell for high-performance lithium-ion batteries and capacitors, Journal of Power Sources, Vol. 396, p. 207-212, (2018)

Author (organization or company)

Kiyoshi TANAAMI(Innovative Research Excellence)、Yuji ISOGAI(Innovative Research Excellence)、Shintaro AOYAGI(Innovative Research Excellence Power Unit & Energy)、Kazuki OKUNO(Sumitomo Electric Industries, Ltd.)、Hiroshi TAKEBAYASHI(Sumitomo Electric Industries, Ltd.)、Kikuo SENOO(Sumitomo Electric Industries, Ltd.)、Akihisa HOSOE(Sumitomo Electric Industries, Ltd.)

We would like to get your opinion on this research paper. (This is only applicable to registered members.)

The readers of this research paper have also selected these research papers.

Small Size Power Control Unit for 2020 Model Year FIT
Article of Honda R&D Technical Review Vol.32 No.2
Low Relative Permittivity of Magnet Wire Insulation Coating for HEV Motor
Article of Honda R&D Technical Review Vol.32 No.2
Modeling and Utilizing Expert’s Knowledge, Experience, and Thinking in Automobile Development
Article of Honda R&D Technical Review Vol.32 No.2